Fricción estática
Cuando las dos superficies están en reposo, la fuerza que se opone al inicio de movimiento se denomina fricción estática. Como impide el movimiento, se puede decir que es igual a la fuerza neta aplicada sobre el cuerpo, solo que en sentido opuesto.
En los ejemplos de fricción estática explica porqué no se mueven los cuerpos:
1. Una caja de mucho peso la empujas en el pavimento o en un piso de loseta.
2. Un coche que quieres empujar y no puedes
3. Un piso seco y uno mojado, que pasa al querer caminar en ellos.
Fricción Dinámica
La fricción dinámica es la que se existe en un cuerpo que ya está en movimiento, y tiene una magnitud constante. La diferencia con la fricción estática se puede ver en el hecho de que los cuerpos en reposo son muy difíciles de mover (fricción estática), pero cuando ya se ha vencido esa fuerza resulta bastante más fácil (fricción dinámica).
Los siguientes son ejemplos de fricción dinámica:
- Los pies contra el suelo, al caminar.
- Las ruedas de una bicicleta contra el suelo.
- El roce entre un avión y el aire.
- Los vehículos submarinos, con la fricción que ejerce sobre el agua.
- Los patines en una pista de hielo o de concreto.
Entra al siguiente vínculo de Prezi y ve la presentación de Trabajo, Potencia y Energías mecánicas, da clic aquí en el subrayado.
La energía cinética
La energía cinética es la energía que tienen los
cuerpos por el hecho de estar en movimiento. Su
valor depende de la masa del cuerpo (m) y de su
velocidad (v).
La energía cinética se mide en julios (J), la masa en
kilogramos (kg) y la velocidad en metros por segundo
(m/s).
La energía cinética del viento es utilizada para mover
el rotor hélice de un aerogenerador y convertir esa
energía en energía eléctrica mediante una serie de
procesos. Es el fundamento de la cada vez más
empleada energía eólica.
La energía cinética es un tipo de energía mecánica. La
energía mecánica es aquélla que está ligada a la
posición o al movimiento de los cuerpos. Por ejemplo,
es la energía que posee un arco que está tensado o
un coche en movimiento o un cuerpo por estar a
cierta altura sobre el suelo.
Energía potencial
Es la energía que tienen los cuerpos por ocupar una
determinada posición. Podemos hablar de energía
potencial gravitatoria y de energía potencial elástica.
La energía potencial gravitatoria es la energía que
tiene un cuerpo por estar situado a una cierta altura
sobre la superficie terrestre. Su valor depende de la
masa del cuerpo (m), de la gravedad (g) y de la
altura sobre la superficie (h).
La energía potencial se mide en julios (J), la masa en
kilogramos (kg), la aceleración de la gravedad en
metros por segundo al cuadrado (m/s^2) y la altura en
metros (m).
Por ejemplo, una piedra al borde de un precipicio
tiene energía potencial: si cayera, ejercería una
fuerza que produciría una deformación en el suelo.
1. Calcula la energía cinética de un vehículo de 1000 kg de masa que circula a una
velocidad de 120 km/h. Recuerda nuestro número clave ***3.6*** y para que sirve.
2. Calcula la energía potencial de un saltador de trampolín si su masa es de 50 kg y
está sobre un trampolín de 12 m de altura sobre la superficie del agua.
Concepto de trabajo
El Trabajo es una de las formas de transferencia
(cuando dos cuerpos intercambian energía, lo hacen,
o bien de forma mecánica, mediante la realización de
un trabajo, o bien de forma térmica, mediante el
calor) de energía entre los cuerpos. Para realizar un
trabajo es preciso ejercer una fuerza sobre un cuerpo
y que éste se desplace.
El trabajo, W, depende del valor de la fuerza, F,
aplicada sobre el cuerpo, multiplicada por el
desplazamiento.
W = Fd . El trabajo, se mide en julios (J) en el SI, la fuerza en
newton (N) y el desplazamiento en metros (m).
La potencia
La Potencia es una magnitud que nos relaciona el
trabajo realizado con el tiempo empleado en hacerlo.
Si una máquina realiza un trabajo, no sólo importa la
cantidad de energía que produce, sino también el
tiempo que tarda en hacerlo. Por ejemplo, decimos
que un coche es más potente si es capaz de pasar de
0 a 100 km/h en un menor tiempo.
La potencia se mide en vatios (W) en el SI, el trabajo
en julios (J) y el tiempo en segundos (s).
En el mundo del motor se usa con frecuencia otra
unidad para medir la potencia: el caballo de vapor
(CV).
1 CV = 736 W
Explica si realizas, o no, trabajo cuando:
a) Empujas una pared
b) Sostienes un libro a 2 metros de altura
c) Desplazas un carrito hacia delante
3. Una fuerza de 100 N actúa sobre un cuerpo que se desplaza a lo largo de un plano
horizontal en la misma dirección del movimiento. Si el cuerpo se desplaza 20 m.
¿Cuál es el trabajo realizado por dicha fuerza?
4. Un escalador con una masa de 60 kg invierte 30 s en escalar una pared de 10 m de altura. Calcula:
a) El peso del escalador
b) El trabajo realizado en la escalada
c) La potencia real del escalador
Para practicar:
Un cuerpo transfiere a otro 645,23
cal. ¿Cuántos julios son?
2. Una persona ingiere 1048,37 kcal en su
dieta. Expresa esa cantidad de energía en
unidades J.
3. Calcula el trabajo que realizará una
fuerza de 392 N que desplaza a un
cuerpo unja distancia de 7 m, si entre
la fuerza y el desplazamiento forman
un ángulo de 52º.
4. Calcula el trabajo que realiza la fuerza
de rozamiento sobre un cuerpo de 13
kg que se desplaza una distancia de
46 m.
5. Calcula la energía cinética de un
coche de 1294 kg que circula a una
velocidad de 58 km/h.
6. Un vehículo de 1104 kg que circula
por una carretera recta y horizontal
varía su velocidad de 17 m/s a 7 m/s.
¿Cuál es el trabajo que realiza el
motor?
7. ¿Qué energía potencial posee una
roca de 143 kg que se encuentra en
un acantilado de 19 m de altura sobre
el suelo?
8. Calcula la energía potencial elástica
de un muelle sabiendo que su
constante elástica, k, es de 336 N/m
y que se ha comprimido 4 cm desde
su longitud natural.
9. Calcula el trabajo necesario para subir
un cuerpo de 85 kg, a velocidad
constante, desde una altura de 11 m
hasta una altura de 16 m.
10. Un saltador de pértiga de 65 kg
alcanza una velocidad máxima de 8
m/s. Si la pértiga permite transformar
toda la energía cinética en potencial:
a) ¿Hasta qué altura podrá elevarse?
b) ¿Cuál es la energía en el momento
de caer a la colchoneta?
c) ¿Cuál es su velocidad en ese
momento?
11. Una máquina realiza un trabajo de
641 J con un rendimiento del 6 %.
Calcula el trabajo útil que realmente
se obtiene.
12.
a) Calcula el trabajo que realiza el
motor de un ascensor en una atracción
para subir 1417 kg, que es la masa del
ascensor más los pasajeros, hasta una
altura de 30 m.
b) ¿Cuál es la potencia desarrollada por
el motor si tarda en subir 24 s?
13. Un cuerpo de 10 kg cae desde una
altura de 20 m. Calcula:
a) La energía potencial cuando está a
una altura de 10 m.
b) La velocidad que tienen en ese
mismo instante.
c) El trabajo que efectúa cuando llega
al suelo.
d) La velocidad con que llega al suelo.
14. Un motor realiza un trabajo de 3000 J
en 20 s
a) ¿Cuál es la potencia del motor?
b) ¿En cuánto tiempo desarrollaría el
mismo trabajo una máquina de 15 W?
La termodinámica estudia las transformaciones energéticas entre calor y trabajo o viceversa
Un sistema termodinámico es una región del espacio que está sometida bajo estudio y que la limita una superficie (pared) que puede ser real o imaginaria. La región externa al sistema que interactúa con él se denomina entorno o alrededores del sistema. El sistema termodinámico interactúa con su entorno a través del intercambio de materia y / o energía.
Una manera de clasificar los sistemas termodinámicos es considerando el modo de relación que tenga con su entorno:
Sistemas abiertos: Aquellos que intercambian materia y energía con su entorno.
Sistemas cerrados: Aquellos que intercambian energía pero no materia con su entorno.
Sistemas aislados: Aquellos que no intercambian ni materia ni energía con su entorno.
La pared que lo limita permite lo anterior y pueden ser de dos tipos:
Paredes restrictivas :
Adiabáticas: No permiten el paso de energía térmica.
Paredes permisivas (o contactos):
Diatérmicas: Permiten el paso de energía térmica.
Leyes de la TD
Ley Cero: Esta ley dice "Si dos sistemas A y B están a la misma temperatura, y B está a la misma temperatura que un tercer sistema C, entonces A y C están a la misma temperatura". Este concepto fundamental, aun siendo ampliamente aceptado, no fue formulado hasta después de haberse enunciado las otras tres leyes. De ahí que recibe la posición cero. Un ejemplo de la aplicación de esta ley lo tenemos en los conocidos termómetros.
1ª LEY DE LA TD.
Permítase que un sistema cambie de un estado inicial de equilibrio , a un estado final de equilibrio , en un camino determinado, siendo Q el calor absorbido por el sistema y W el trabajo hecho por el sistema. Después calculamos el valor de U su energía interna. A continuación cambiamos el sistema desde el mismo estado hasta el estado final , pero en esta ocasión por un camino diferente. Lo hacemos esto una y otra vez, usando diferentes caminos en cada caso. Encontramos que en todos los intentos es la misma. Por lo que decimos que la energía se conserva o se transforma pero no se pierde.
2ª LEY DE LA TD.
Solo una pequeña fracción del calor absorbido de la fuente de alta temperatura se podía convertir en trabajo útil. Aun al progresar los diseños de la ingeniería, una fracción apreciable del calor absorbido se sigue descargando en el escape de una máquina a baja temperatura, sin que pueda convertirse en energía mecánica. Por nuestra experiencia sabemos que cuando dos cuerpos se encuentran en contacto fluye calor del cuerpo caliente al cuerpo frío. En este caso, la segunda ley elimina la posibilidad de que la energía fluya del cuerpo frío al cuerpo caliente y así determina la dirección de la transmisión del calor. Es completamente imposible realizar una transformación cuyo único resultado final sea el de cambiar en trabajo el calor extraído de una fuente que se encuentre a la misma temperatura. O sea siempre nunca será posible convertir todo el calor en trabajo.